
Whisper是什么?
Whisper是一个由OpenAI训练并开源的神经网络,它在英语语音识别上接近人类的鲁棒性和准确性。它是一个自动语音识别(ASR)系统,通过从网络收集的680,000小时的多语言和多任务监督数据进行训练。Whisper能够改善对口音、背景噪音和技术语言的鲁棒性,并且能够进行多种语言的转录以及将这些语言翻译成英语。
主要特点:
- 多语言和多任务监督数据:Whisper的训练数据集庞大且多样化,这有助于提高其在不同口音、背景噪音和技术术语上的鲁棒性。
- 端到端的Transformer架构:Whisper的架构简单,采用编码器-解码器Transformer模型,输入的音频被分割成30秒的片段,转换为对数Mel频谱图,然后传递给编码器。
- 特殊标记:解码器训练用于预测相应的文本字幕,其中包含特殊标记,指导单一模型执行语言识别、短语级时间戳、多语言语音转录和英语语音翻译等任务。
主要功能:
- 语言识别:Whisper能够识别多种语言,并在需要时进行转录或翻译。
- 转录和翻译:除了转录原始语言的语音,Whisper还能够将非英语音频翻译成英语。
- 零样本学习:Whisper在没有针对特定数据集进行微调的情况下,能够在多个不同的数据集上展现出更好的零样本性能。
使用示例:
假设你有一个包含不同语言的音频文件,你可以使用Whisper来:
- 将音频分割成30秒的片段。
- 将每个片段转换为对数Mel频谱图。
- 使用Whisper模型进行语音识别,得到文本转录。
- 如果需要,还可以将文本从原始语言翻译成英语。
总结:
Whisper是一个强大的多语言自动语音识别系统,它通过使用大规模和多样化的数据集,提高了在复杂环境下的语音识别能力。它的开源特性为开发者和研究人员提供了一个基础,可以在此基础上构建有用的应用程序或进行进一步的语音处理研究。Whisper的主要优势在于其鲁棒性和多语言处理能力,使其成为一个在语音识别领域具有潜力的工具。
数据统计
数据评估
关于Whisper OpenAI特别声明
本站AI World Copilot提供的Whisper OpenAI都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由AI World Copilot实际控制,在2024年12月13日 下午3:47收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,AI World Copilot不承担任何责任。
相关导航

将音频转换为文本与Rythmex转...

Type Studio
自动视频到文本转录和快速视...
翻译站点">Getsound翻译站点
Getsound基于当前天气条件的个性化音景。可用于水疗中心、酒店、度假村和工作场所。使用24/7天气监测和物理环境参数,该应用程序创建不断变化且独特的音景。 还提供了20多个音景,...

StableAudio
由Stability.ai团队倾力打造的Stable Audio 2.0音频生成模型

简克隆
简克隆(Clonedub)是一个提供自动配音服务的平台。这项服务允许用户将视频或音频文件上传到平台,并选择所需的配音语言。

Udio AI
音乐生成式软件

voice.ai
voice.ai的使命是通过普及人工智能技术,增强协作创造力,并允许社区重新定义音频表达方式。公司相信人工智能应该是易于接近、对所有人开放且富有趣味的。
翻译站点">Songtell翻译站点
Songtell是第一个人工智能生成的歌曲含义库,生成了超过20000首歌曲的含义。你也可以订购一张印有你最喜欢的歌曲含义的海报。
暂无评论...


